More on Simplicial cats

Recall from last week:

- Monoidal categories, functoss, nat. tranformations, etc.
- Enriched categories, functors, nat. transformations, etc. Lemma. We have a 2-functor

Moncat $\longrightarrow$ Cat
$\Phi: V \rightarrow V^{\prime} \leadsto \Phi_{+}: \operatorname{Cot}_{V} \longrightarrow \operatorname{Cat}_{v}$ a 1 -functor

$$
o b \Phi_{*} r=o b r, \quad \operatorname{Hom}_{\Phi_{*}} e(x, y)=\Phi \operatorname{Hom}_{e}(x, y) .
$$

This sends moncidal adjunctions to adjunctions.
Def: Cats is the category of simplicial categories, ie. categories enriched over set.

Lemma: Cat, is bicomplete.

Recall from earlier: we have adjunctions


Lemma. These all of these functors are moncidal, and so are the adjunctions, so we get adjunctions
$\pi=\left(\pi_{0}\right)_{*}$ - honotopy category
Cat,

$c=c_{*} \bar{\jmath}$ constant enrichment
$\operatorname{Hom}\left(\Delta^{\circ},-\right)_{*}$
$\underline{u}=\left(\underline{w}_{0}\right)_{*}$ - underlying category
Idea of proof: both set and set are cartesian $(\theta=x)$, so we hare canonical mops

$$
x \times y>F>F(x \times y)>F X \sim F(x \times y) \rightarrow F X \times F Y
$$

- $c$ and eve ce right adjoints, so they preserve products.
- For Toss consider

$$
(x \times y)_{0} \cong x_{0} \times y_{0}
$$

$$
\pi_{0}(x \times y) \longrightarrow \pi_{0} x \times \pi_{0} y
$$

must be sucjective abs infective since
we con lift relations, because eva, is moncidal.

Terminology. Let $e \in$ Cat $\Delta, \quad a$ orphism $x \rightarrow y$ in $e$ is a morphism $x \rightarrow y$ in $u e$ ie a 0 -simplex of Home $(x, y)$. A orphism in $e$ is an equivalence if its image in $\pi C$ is on isomorphism.

Next: defining the nerve of a simplicial category.
We do this by constructing a cosimplicial object in Cats. $\Delta \rightarrow$ Cat $_{\Delta}$

Def. Let $J$ be a finite nonempty totally ordered set, $i, j \in J$.

$$
\begin{aligned}
P_{i, j} & =\{I \leq J: i, j \in I \text { and } k \in I \Rightarrow i \leq k \leq j\} \\
& =\{\text { slobetts of }[i, j] \text { containing the endpoints }\}
\end{aligned}
$$

$D_{i, j}$ is a poset under induslar.
If $i>j$, then $P_{i, j}=\varnothing$. If $i \leq j \leq k \in J$, then

$$
\begin{aligned}
\left.W P_{i j}\right) \times N R_{j}, k & \longrightarrow N\left(Q_{i, k}\right. \\
\left(I, I^{\prime}\right) & \longmapsto I \cup I^{\prime}
\end{aligned}
$$

is an associative binary operation.
For each $J$, we have a simplicial category $\mathbb{C}\left[\Delta^{J}\right]$ :

$$
d b \mathbb{C}\left[\Delta^{J}\right]=J, \quad H_{o n} \mathbb{C}\left[\Delta^{J}\right](i, j)=\left\{\begin{array}{lll}
\phi & \text { if } & i>j \\
N\left(P_{i, j}\right) & o / w
\end{array}\right.
$$

Composition is induced by the brno operation above.
Lemma. Let $n \geq 1, J=[n]$. Then
(a) $N\left(P_{0, n}\right) \cong\left(\Delta^{1}\right)^{n-1}$
(b) $P_{i, j} \cong P_{0, j-i}$.

Proof. (b) is clear. For (a), suffices to show
$D_{0, n} \cong \underbrace{[1] \times \cdots \times[1]}_{n-1 \text { times }} \times$ an element of thin represents

$$
s \longmapsto\left(x_{\delta}(1), \ldots, x_{s}(n-1)\right)
$$

Lemma. If $c$ is a category with on initial or terminal object, then $N(e)$ is contractible.

$$
\begin{aligned}
& \phi \in C \text { initial } \Rightarrow \phi \Rightarrow 1 r \\
& e \times[1] \rightarrow r \sim N(e) \times \Delta^{1} \rightarrow N(e)
\end{aligned}
$$

Cor. For $i \leq j, \quad H_{o m} \mathbb{C}\left[\Delta^{J}\right](i . j)$ is contractible.
Lemma. There is a unique iomorphison $\pi \mathbb{C}\left[\Delta^{n}\right] \cong[n]$ which is the identity on objects Hence, we have a conorncal functor $\mathbb{C}\left[\Delta^{n}\right] \rightarrow \mathbb{c}[n]$.

Lemma. The assignment $J \backsim \mathbb{C}[\Delta J]$ defines a functor

$$
\text { Linordset } \longrightarrow \text { cat }_{\Delta}
$$

In particular, we have a cosimplicial object $\Delta \rightarrow$ cats given by $\quad[n] \rightarrow \mathbb{C}\left[\Delta^{n}\right]$.
Idea of proof: Unfolding definitions, it suffices to construct for al monotone map $f: J \longrightarrow J$ and $i \leq j \in J$, a monotore map $P_{i, j} \rightarrow P f(j), f(j)$ This is Iصf(I).

Def. For $\tau \in$ Cats, its simplicial nerve (or honotopy coherent nerve) is the stet:

$$
N(e)_{n}=\operatorname{Hom}_{\underline{\cot } \Delta}\left(\mathbb{C}\left[\Delta^{n}\right], \varepsilon\right)
$$

Lemma. If $r \in \operatorname{cat}$, then $N(r) \cong N(c e)$.
Proof: $\quad N(c e)_{n}=\operatorname{Honcat} \Delta\left(\mathbb{C}\left[\Delta^{n}\right], c r\right)$

$$
\begin{aligned}
& \cong \operatorname{Hon}_{\text {cat }}\left(r \mathbb{C}\left[\Delta^{n}\right], r\right) \\
& \cong \operatorname{Hon}_{\text {cat }}([n], r)=N(r)_{n}
\end{aligned}
$$

Discussion. What do (low dimensional) simplices in $N(e)$ boo like?

- $\mathbb{C}\left[\Delta^{\circ}\right]$ has a single object and $\operatorname{Hon}_{\mathbb{C}\left[\Delta^{\circ}\right]}(0,0)=N\left(P_{0,0}\right)=\Delta^{\circ}$.
- $\mathbb{C}\left[\Delta^{1}\right]$ has two objects and all hom-sSets are $\Delta^{P}$. $P_{0,1}$

Hence, $\mathbb{C}\left[\Delta^{0}\right]=c[0]$ and $\mathbb{C}\left[\Delta^{2}\right]=c[1]$.

$$
\begin{aligned}
& \text { - } N(e)_{0}=\operatorname{Hom}_{\text {cats }}\left(\mathbb{C}\left[\Delta^{\circ}\right], r\right) \cong \operatorname{Hon}_{\text {cat }}([0], u r) \\
& \cong o b u e=o b e \text {. } \\
& \text { - } N(e)_{1}=\operatorname{Hom}_{\underline{\text { cat }}}\left(\mathbb{C}\left[\Delta^{1}\right], e\right) \cong \operatorname{Hon}_{\text {cat }}([1], u r) \\
& \cong \operatorname{mor} u e=\operatorname{mor} e \text {. }
\end{aligned}
$$

What is $\mathbb{C}\left[\Delta^{2}\right]$ ? It has three objects. All hom-sSets are $\Delta^{0}$ except $H_{0 n} \mathbb{C}\left[\Delta^{2}\right](0,2)=N\left(P_{0,2}\right) \equiv \Delta^{1},\{0,2\},\{0,1,2\}$
Hence, a simplicial functor $\mathbb{C}\left[\Delta^{2}\right] \rightarrow r$ picks out: $\mathbb{C}\left[\Delta^{2}\right]$


Lemma. There is a unique colinit presuving functor

$$
\mathbb{C}[-]: \text { sset } \rightarrow \cot _{\Delta}
$$

Which sends $\Delta^{n} \mapsto \mathbb{C}\left[\Delta^{n}\right]$. It is left-adjoint to $N$.

Fact. $\mathbb{C}[-]$ preserves monomorphiums, is. if $A \subseteq X$ is an inaluiar of ssets then $\mathbb{C}[A] \hookrightarrow \mathbb{C}[X]$.

Lemma: Let $0<j<n . \quad \mathbb{C}\left[\Lambda_{j}^{n}\right] \leq \mathbb{C}\left[\Delta^{n}\right]$ is given by:
(1) $o b \mathbb{C}\left[\Lambda_{j}^{n}\right]=o b \mathbb{C}\left[\Delta^{n}\right]$.
(2) $\operatorname{Hom}_{\mathbb{C}\left[\Lambda^{n}\right]}(i, k)=\operatorname{Hon}_{\mathbb{C}\left[\Delta^{n}\right]}(i, k)$ except

$$
\operatorname{Hom}_{\mathbb{C}\left[1^{n} j\right]}(0, n) \subseteq \operatorname{Hon}_{\mathbb{C}\left[\Delta^{n}\right]}(0, n)
$$


which is given by the subsimplicial set of $\left(\Delta^{\prime}\right)^{n-1}$ obtained by deleting the interior of the bottom $j$-face.

Proof idea: $\Lambda_{j}^{n}=\bigcup_{i \neq j} \Delta^{n\{\{i\}}$ so look at $\mathbb{C}\left[\Delta^{n\lfloor i\}}\right] \subseteq \mathbb{C}\left[\Delta^{n}\right]$.
Lemma. $N(r)$ is a composer. Further, if all hon-ssets in $r$ are KO complexes then $N(\tau)$ is an $\infty$-category.
Proof:


But we have a retraction of $\mathbb{C}\left[I^{n}\right] \rightarrow \mathbb{C}\left[\Delta^{n}\right]$.
To see this, rote $\mathbb{C}\left[I^{n}\right]=c[n]$ since $I^{n}=I^{n-1} U_{\Delta} I^{1}$.
But we saw there is a unique simplicial functor $\mathbb{C}\left[\Delta^{n}\right] \rightarrow c[n]$ that is the identity on objects. Then

$$
c[n] \cong \mathbb{C}\left[\Sigma^{n}\right] \hookrightarrow \mathbb{C}\left[\Delta^{n}\right] \rightarrow c[n]
$$

is the identity.

For Kan complexes, need $0<j<n$


From the previous lemma, we only need to worry about


But this follows from the fact that the vertical map is arodyre. Ore checks that this extension in fact define a simplicid functor.

Remarle. Nerves of categories enriched over Ron complexes will be ( $\infty, 1$ )-categories?

Def. Consider the simplicial catego 3 of $C W$-complexes and hon-ssets the sizzler set of the mapping space. Its simplicial nerve is the $\infty$-category of spaces, spa. Lemma. The product and copnoduct of $\infty$-cats is an $\infty$-cat. Proof. For product, find extension in each factors and then put together. For coproduct, note that $\Lambda_{j}^{n}$ and $\Delta^{n}$ are connected.

Def. A sub- - -cat $e^{\prime} \subseteq e$ is a subsimplicial set determined by subsets $x \leqslant r_{0}$ and $s \leq r_{1}$ between objects in $x$ and closed under composition on equivalences. An n-simplex of $r$ belongs in $e^{\prime}$ iff the edges of its restriction to the spire $I^{n}$ ore in $S$. A subcategory is full if $S$ contain all 1-simplices whose bander is in $X$.

Lemma. A sub-m-category is an $\infty$-cat. Its homotopy category is the subcategory of he $n$ the image of $S$.

is a pullback. For on y subcategon $D \subseteq h e$, this pullback gives a sub-a-cat.

Cor. There is a 1-to-1 correspondence between scb-co-cats of $e$ and subcategories of he Full correspond to full.

Def. A natural trowformation between functor s $f_{1}: r \rightarrow D$ is a simplicial map $e \times \Delta \rightarrow \infty$ that restricts to $f$ and $g$.

Remade. This exactly a 1-simpex in Hon $(e, \infty)$.
we will see that Hon $(e, \infty)$ is ass an $\infty$-cat and $N(F \min (e, \infty))=\operatorname{Hom}(N e, N \infty)$ since $N$ is fully faithful.
$-x A-\operatorname{Hom}(A,-)$

EAnodgre $A($ (lon) libration $C=$ sScts
Def: A (edt/right/inmer) hbroution $p: K \rightarrow S$ hais the RLP urt left/right/inuer horns
 is an liner filoration ift $x$ is $x$-ah

Sclor(c)

$$
X_{R}(S)=\left\{f: x \rightarrow c \mid f \text { have } R(P \text { int } \delta\} \quad X_{L}(\delta)(L R P)\right.
$$

$$
\left.X_{R}(\text { cleft horn }\}\right)=\text { Leff Fibration. }
$$

Deh $A$ up $f: A \rightarrow B$ is (efft/nght/linier) andguc if it hes LLP ort (‥-) fibrations i.e. $X_{L}\left(X_{R}(\right.$ eft/right linner horns $\left.)\right)$

$$
\delta \Rightarrow S c x_{L}\left(x_{R}(\delta)\right)=x(S)
$$

Det: $A S \subset M$ or (C) is satuated if:
i) if contuive all isos
2) Srelde under pusharts:

3) Stable retrach: id

4) Stable ander contable conpostion ( $\mathbb{N}$-dingrain)

$$
\begin{aligned}
& A_{0} \xrightarrow{i_{0}} A_{1} \xrightarrow{i_{1}} A_{2} \rightarrow \cdots \quad i_{j} \in \delta \quad \ngtr j \\
\Rightarrow \in S & \operatorname{chm}_{N} A_{j}
\end{aligned}
$$

5) Coprode: If $\left\{A_{j} \longrightarrow B_{j}\right\}_{j \in j} \subset S$

$$
\Rightarrow \quad \frac{H}{6} A_{j} \frac{\Delta i_{4}}{\partial} B_{j} \in S
$$

Det $S$ chor(e). The saturtal doine of $S$ is the oullest satirated set contuining Si i.e. $\bar{\delta}=\bigcap_{\substack{T \text { antantel } \\ \text { Tos }}}$

Lemi $S$ e thor (e). Then, $X_{L}(S)$ is setratidel:




- similatay br
coproles

Ptop: (Siall Object Argment) $c=s$ Sch
Let $S=\left\{A_{i} \rightarrow B_{j}\right\}^{2 n a l} M_{0}(C)$ s.t. $A_{i s}^{\prime}$, heve finititely nong noi-dy simplice Then any $f: x \rightarrow y$ in $s$ sets on be pactarized.

$$
x \stackrel{f}{h_{z}^{\prime \prime} \rho_{g}} \text { st } h \in \bar{S}, g \in X_{k}(s)
$$

